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Abstract

The Plancherelmeasureis calculatedfor antisymmetrictensorfields (p-forms) on
the realhyperbolicspaceH’~’.The Plancherelmeasuregivesthespectraldistribution of
theeigenvaluesWA of theHodge—deRhamoperator4 = do + Od. The spectrumof 4 is
purely continuousexceptfor N evenandp = N. For N odd thePlancherelmeasure

p(A) is a polynomial in A2. For N even thecontinuous part p(A) of the Plancherel
measureis a meromorphicfunction in the complex A-planewith simple poles on the
imaginaryaxis. A simple relation betweenthe residuesof u(A) at thesepolesand the
(known) degeneraciesof 4 on the N-sphereis obtained. A similar relation between
p(A) at discrete imaginary valuesof A and thedegeneraciesof 4 on SN is found for
N odd. Thep-form c-function, defined as a Mellin transformof the traceof theheat
kernel, is considered.A relation betweentheç~-functionson SN and HN is obtainedby
meansof complexcontours.We constructsquare-integrableharmonick-forms on H2k.
Thesek-forms contributea discretepart to thespectrumof 4 and are related to the
discreteseriesof S0

0(2k,1). We also give a group-theoreticderivationof p(A) based
on thePlancherelformula for theLorentzgroupSO0(N, 1).
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1. Introduction

In quantumfield theoryoneoften needsto givea meaningto formal expres-
sions like determinantsof second-orderdifferential operators.A convenient

regularizationprocedureis the ~-function method [12,171. This method can
be applied when the spacetimein which the quantumfield propagatesadmits
a Euclideansection,i.e., when a Wick rotation of the time variable from the
realaxis to the imaginaryaxisdefinesa Riemannianmanifold If with positive

definite metric [34]. The one-loopfunctional determinantof an operatorlike
—V~V(, + K can then be defined from the c-function of the corresponding
elliptic operatoron M accordingto [17]

det[~VnV(, + K] = exp[—~’(O)]. (1.1)

In casethe Euclideansectionis compactthe c-function is given by

~(z) = ~ (1.2)

where w,~are the discrete eigenvaluesof the operator with degeneracicsd~.
The analytic structureof the g~-function(1.2) (for the Laplacian acting on

scalar fields) was first studied by Minakshisundaramand Pleijel [26]. The
sum usually convergesfor Re > N/2, where N is the dimension of the
compactmanifold M, and is determinedfor the othervaluesof by analytic
continuation in z.

It is well known that the N-sphere (S~)is the Euclideansection for N-
dimensionalde Sitter spacetime.One-loopcalculationshavebeenperformed
usingthe well-known spectrumof the Laplacianon S”~[1,1 31.

It has been pointed out [3,6] that the Euclideansectionfor anti-deSitter
spacetimeis the real hyperbolicspaceH~,the noncompactRiemanniansym-
metric space(SS) of rank onewhich is “dual” to SA’ in the senseof SS theory

(see Ref. [18]). For noncompactmanifolds the definition of the c-function is
more complicated.The compactc-function (1.2) can be obtainedas a Mellin
transformof the traceof the heatkernel

~(z) = r(~)/dhtT~(t)~ (1.3)

whereTr meansboth a traceover the spinor-tensorindices in the heatkernel
Kah(X.X’, t), 2 andan integration over the manifold:

TrK(t) =fdx~K
0a(x,x~t). (1.4)

2 Herethe spinor-tensorindicesat x and.v’ are collectively representedby a and b, respectively.
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In the noncompactcasewe canonly define a “local” ç~-functionby

~(z,x) = F(z) fdttz_1~Kaa(X,X,t), (1.5)

the integralof this quantityoverthe manifoldbeing (generally)divergent.If M

is ahomogeneousspaceG/K, whereG andK(c G) aregroupspaces,the scalar
function ~aK

0’
2(X,X,t) is independentof x eM andequals>~aKaa(XO,XO,t),

where x
0 is the “origin” of G/K (which may be chosenarbitrarily). In this

casethe right-handside of Eq. (1.5) definesa function of z only, denotedby
~(z). On the hyperbolicspaceH~’,which is homogeneousbeing isomorphic
to the cosetspaceS00(N,l)/SO(N), the ~-function (1.5) takesthe form ~

~(z) ~ fdAJL(A)w~~ (1.6)

where the real parameterA labels the continuousspectrumof the Laplacian
and the WA are the correspondingeigenvalues.In the caseof a noncompact
Euclideansection,the function ~.t~ playsthe samerole as the discretedegen-

eraciesd~in Eq. (1.2).
For scalarfields the function ~.t(A) is known in the mathematicalliterature

as the Plancherel measure [19], becauseit arises in the inversion formula
for the spherical transformand in the Plancherelformula on a noncompact
RiemannianSS G/K. For exampleon HN theseformulae are

.1(A) ff()~(Y)(sinh y)Nldy (1.7)

f(y) = cNff(A)~(Y)JL(2)dA~ (1.8)

~Strictly speakingEq. (1.6) gives only the continuouspart of the zetafunction. For N even the
Laplacianon H” may alsohave a discretespectrum,due to the existenceof discreteser,esfor
the group 500(N, 1). (Theseare the irreducibleunitary representationswhosematrix elements
aresquare-integrable.)It is knownthat the discreteseriesdo not appearin the Plancherelformula
for scalars [20], spinors [5] or symmetric transversetracelesstensors 171 on HN (AT � 3).
(The scalarresult generalizesto arbitrary noncompact RiemannianSS G/K, since the trivial
representationof K is nevercontained in the discreteseries, see [25, p. 4551.) However it is
clear that the discreteserieswill eventuallyenterin the Plancherelformula for a genericvector
bundleover HN. It will be seen here (seealso [10]) that for p-forms on H~’ the spectrumof
A is purely continuousexceptfor N even and p = ~N. In this casethereare square-integrable
p-forms which are harmonicand contributea discretepart to the spectrum.We shall often refer
to y(A) asthe “Plancherelmeasure”,meaningthe continuouspart of it. The discretepart of the
Plancherelmeasureis just the formal degreeof the discreteseries (e.g. Ref. [37, vol. II, p. 407])
and will be calculatedin Section 6.
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f~f(~.)P(sinh~~)N_ld
1~ = C~f~.f().)~2t~().)d2. (1.9)

Here f(y) is a zonal (i.e. SO(N)-invariant) function on HA’ with compact
support,which dependsonly on the geodesicdistance i’ from the origin, and
çl~(v) are the (scalar)sphericalfunctions, i.e., the eigenfunctionsof the radial
Laplacianwhich satisfy çl)(O) = 1 (see,e.g., Ref. [19]). The constantc~is
given by

cN = 2A’_2/m. (1.10)

The functionsçl~(i’) satisfy the orthogonalityrelations

I .

I c~A(y )~)), (ti (sinh i.). c/i’ = , . (1.11)
j
0

7 , ________

clA(y)~ACv)p(~&)dA= ç. . (1.12)
0 cA sinh~

where 0 is the Dirac distribution. The function /2(A) (for scalarson HN) is

given by [3]

__________ F(iA + ~(N— 1)) 2
= ~ . (1.13)

[2v_2r(T)]

More generally,the scalarPlancherelmeasureis known on any Riemannian
symmetric spaceof the noncompacttype (with negative curvature),and is
given by

p(A) = [C(A)C(-A)]± (1.14)

wherethe function C(A). known as the Harish—Chandrafunction, is given in

terms of a product over the positive roots of the symmetricspace (see, e.g.,
Eq. (5.38) of Ref. [4]). (If the rank of the symmetric space is / (� 1). the
spectrumlabel A is a vector with / components,A E .4. where A 71’ is a
Cartansubspaceof the symmetricspace [4].) The function C(A) is related to
the asymptoticform at infinity of the sphericalfunctions.Recentlythe concept
of sphericalfunctions hasbeengeneralizedto Dirac spinorson HA’, and/1(A)
hasbeencalculatedin that case [5 1.

The Plancherel measurecan be generalizednaturally to arbitrary fields
(vector, tensor,spinor, etc.) on a SS. It is different from the scalarPlancherel
measurein general. In this paper the Plancherelmeasurewill be calculated
for antisymmetrictensorfields (p-forms) on H”’’. We shall first constructthe
eigenmodesof the Hodge—de Rham operator by working in geodesicpolar
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coordinates.We shall do this for SN, in Sections2 and 3, and rederivethe
spectrumof I on S”’’ (first calculatedin Refs. [14,23,24]) independently.By
analytic continuationwe shallobtain, in Section4, the eigenmodeson H”, and
computetheir normalizationfactors to find the continuouspart p (A) of the
Plancherelmeasure.It is enoughto do thecalculationfor coexactp-eigenforms,
the result for the exactonesfollowing by a simpletransformation(seeSection
2).

The function p(A), obtainedin this way, hasthe following properties.For
N odd it is an analytic functionand in fact it reducesto a polynomial in the
variable22. For N evenp (A) can be continuedto a meromorphicfunction in
the complexA-plane, with simple poles on the imaginaryaxis. The following
relationwill be demonstrated:

p (i(p + n)) — n — 1 2 (115)
p(i(p+l)) — d1’ —

where p (N — 1 )/2, d~are the degeneraciesof 4 acting on p-formson SN,
andwhereit is understoodthat for N eventhe left-handside meansthe ratio
of the residuesof p (A) at the polesA~= i (p + n) and2~= i (p + 1). This is
ageneralizationof the resultsobtainedin Refs. [4] and [20] for scalarfields.
A similar resulthasbeenobtainedalso for spinorfields [5] andfor symmetric
transversetracelesstensorfields [7] on H”.

The discretepart of the spectrumis consideredin Section5. We construct
square-integrableharmonick-formson H2k, whoseexistencewas demonstrated
byDodziuk [11].

In Section6 we give an alternativederivationof p(2) usinggroup-theoretic
methods.Givena vectorbundleE

t overG/K (determinedby the irreducible
representation(irrep) t of K), the spaceL2 (G/K,Et) of square-integrable
sectionsof E~can be regardedas a subspaceof L2 (G) (the spaceof square-
integrablefunctionson G) in a naturalway. In fact the regular representation
7t of G on L2 (G) is unitarily equivalentto the direct sum over the irreps t

of K of the inducedrepresentationsm~of G on L2(G/K,ET) (eachm~being
countedanumberof timesequalto the dimensionoft), see e.g.Ref. [27]. It
follows that the Plancherelmeasurefor an arbitraryvector bundleover G/K
can be determinedfrom the Plancherelmeasurefor scalar functionson the
groupG. Onesimply needsto identity the irreducibleunitary representationsin
the Plancherelformulafor L2(G) (discreteseriesandprincipal series)whose
restrictionto K containsthe given r (seeRef. [27, Lemma I ]). The advantage
of this method is that the Plancherelformulafor L2 (G) hasbeenworkedout
by Harish—Chandrafor general semisimplegroups (see e.g. Ref. [25]). For
the LorentzgroupSOo(N, 1) the formulatakesa simple form, which hasbeen
given, e.g.,by Hirai [22] (seealso [31,28] for N 4). Using Hirai’s formula
we reobtain the resultsof Sections4 and5. This methodcan be usedto obtain
the Plancherelmeasurefor arbitraryfields on H”’’ andprovea resultanalogous
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to (1.15).
In Section 7 we examine the analytic propertiesof the zeta functionsof 4

on HA’ andS”’. We find that on both spaces~(z) extendsto a meromorphic

function in the complex z-plane with simple poles at z = ~N, ~,\T — I
for N even, andz = ~N, ~N — 1 —‘x for N odd and p ~ p. For p =

the c-function on HN is undefinedwhile that on Svhasonly a finite number
of poles at = ~N, ~N — I,..., ),. The zetafunctionshaveso-called“trivial”
zeros at the negativeintegersin the odd-dimensionalcase.In Section 8 we
obtaina relationbetweenthe p-form zetafunctionson H”’ andS”. We obtain
a contour representationof the c-function on the even-dimensionalsphere
by deformingthe contourof integrationof (1.6) in the complex2-planeand
using the relation (1. 1 5) betweenthe residuesof p (2) and the degeneracies
d~on S”T. A variation of this idea is then used to find similar results in the
odd-dimensionalcase.

2. Exact and coexactp-forms on the N-sphere

We assumethat the reader is familiar with the theory of p-forms on man-
ifolds, and with the basic propertiesof the differential operatorsacting on
them, i.e., the exterior derivative d, the coderivative0, and the Hodge—de
Rham Laplacian4 = dO + Od (see,e.g., Refs. [36,9]).

From the Hodge decompositiontheorem (e.g. Ref. [36, p. 233]) every
p-form co on a compact Riemannian N-dimensional manifold .if (p =

0, 1 N) can be uniquely written as the sum

w=do+O/3+wh (2.1)

of an exactform (dv), a coexactform (0/3), anda harmonicform (4w~,= 0).
It is well known that each de Rham cohomologyclass on a compactmanifold
containsa unique harmonic representative.Thus the spaceof harmonicp-
forms is isomorphicto the cohomologyspaceH” (M) = closedp-forms/exact
p-forms, i.e. h~ dim H” (M) = dim Ker4~(seeRef. [36, p. 225] or Ref. [9.
p.400]). On the N-sphere,b

0 = h,~= I andb~= 0 for 1 <p <N—I [9].
Thereforefor 1 <p < N — 1 there are no harmonicp-forms on S~,and any
p-form can be written as d~+ 0/3 and is exact (coexact)if and only if it is
closed (coclosed).

Now let w be an eigenform of 4 with eigenvalueA, i.e. 4w = 2w. Since d
and0 both commutewith 4, it follows that dw and Ow are also eigenforms
of 4 with the sameeigenvalue.In particular, if dct is an exactp-eigenformof
4, /3 = Ods is a coexact(p — 1 )-eigenform of 4 with the sameeigenvalue.
Therefore if w~(p) [w~(p)] and d~(p)[d~(p)] denote the eigenvalues
and the degeneraciesof 4 acting on exact (coexact) p-forms, we have for
p = l,2,...,N
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w~(p)=w~(p—1), d~(p)=d~(p—l). (2.2)

For this reasonwe shall consideronly coexact (i.e. divergenceless)p-forms
in the following. Another relation betweeneigenvaluesand degeneraciesfor
p=0,l,...,N—lis

w~(p) =w~(N—p—l), d~(p) =d~(N—p—1). (2.3)

To seethisrememberthatthe dualoperator* maps a p-form to an (N—p)-form
andsatisfies** = (—l)~~”’’~”~[36]. Fromthe definition 0 = (—1)” * d* it
follows that the dual of a coexact form is an exact form. Since* commutes
with 4, the dual of a coexactp-eigenformis an exact (N — p)-eigenformwith
the sameeigenvalue.Therefored~(p) = d~(N — p). (Noticethat for N even
andp = N/2 exact andcoexact forms have the samespectrum.)The result
(2.3) thenfollows from (2.2). Sincethe casewith p = 0 reducesto the scalar
theory,we shallassumethat 1 <p ~ N — 1 unlessstatedotherwise.

Now let H be a coexactp-eigenformof 4 satisfying

OH=0, (2.4)

OdH=AH. (2.5)

In local coordinates these equations read

= 0, (2.6)

— (p + 1 )V~V1nH0i...0p1= (L + p) (L + N — p — 1 ~ (2.7)

where Va denotesthe covariant derivative with respect to the Levi-Civita
connection of the canonical metric on SN (of unit radius), and we have set
A = (L +p)(L + N—p—1) with L to be determined. (It will be shown that
regularity of the eigenmodes requires L = 1, 2,. . . , oc.)

It is known (see, e.g., the appendix by Dodziuk in Ref. [8]) that on a com-
pact manifold I is a positivedefinite elliptic operatorwith discrete spectrum.
[Rememberthat on scalarfunctionsIf = _V~Vaf.]The spectrumof 4 on
SN hasbeen calculatedin Refs. [14,23,24]. We give (below and in Section
3) an independentderivation basedon the evaluationof the eigenmodesin
geodesicpolar coordinates.We write the metric on SN as

ds
2 = d~2+ sin2~dO,~,_~, (2.8)

where dO~.,_
1is the line elementof SN_i. Define the rescaledforms

and on SN_i (depending on x as a parameter) by

~ (sink )“
2F.~’~ (2.9)

H~
11~(sin~)~F~

2~. (2.10)

Thenwe can rewrite Eq. (2.6) as
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= 0, (2.11)

+ (N—p— l)cotx]F —OF’2~= 0, (2.12)

where d and 0 acting on F~’~and F~2~are the exterior differential and
codifferential operatorson SN_I.Eq. (2.7) can be written as

+ (N— l)cot~~ + {—Od + (p — l)(N—p — l)}] F~’~

= —L(L + N— 1)F°~ (2.13)

(we have used the condition (2.12) to derive this), and

[~
2+(~~_Ucotx~+ .

1
2{_Od+P(N_P_2)}]F(2)

— ~ [~+ ~‘ —p —3) cotx] ~ = —L(L + N — 1 )F’>.
sin .x

(2.14)

The solutionsof Eq. (2.13) are

= QLI(X)H~°
1, (2.15)

where ~ is aX-independentcoexact (p — 1)-form on ~ which satisfies
an equation analogous to (2.7) (with label / in place of L), i.e.

OdiI~’~ = (7 + p — l)(/ + N—p — l)H~, (2.16)

and QLI (x) is given by

QLI(X) (sin~)’F(L+ N + / — 1,7 — L;/ + ~N;sin2 ~), (2.17)

where F(cs,fl;y;z) is the hypergeometricfunction. In Eq. (2.16) a represents

the labels other than L and7. The condition (2.12) is solved as

F(2~1J0)= 1 (2.18)
(1 + p — l)(/ + N —p — 1)

x [~+ (N — p — I ) cotx] QLI (x )d~’~.

Onecan showthat this satisfies (2.14) as well. When F~’~= 0, the solutions

of (2.14) are simply

F~2~= QL,(X)H, (2.19)

whereP is a coexactp-form on SN_I satisfying

Odil = (/+p)(/+ N—p—2)H. (2.20)
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Now let us showthatL = 1,2,.. . , oc. The proofis essentiallyby induction
over the dimensionN. Assumethat / = 1,2,..., oc for 1 ~ p ~ N — 2, and
recall that! = 0, 1,..., oc forp = 0. (Obviously, thereareno coexact(N— 1)-
formson 5~~T_l.) Then,onefinds from (2.15)thatL mustbe an integerlarger
than or equalto / for the regularity of thesesolutionsat x = it. This shows
that L = 1,2,.. .,oc for p > 2, and for L fixed 1 = 1,2,...,L. For p = 1,
thereis no solution with L = 1 = 0 becauseEq. (2.12) cannot be solvedif
F~’~= constant.

3. Degeneracieson Si”

For the solutionsgiven by (2.15) and (2.18) we find

~ H(J~t~) H(~~b0)*A

p(L+p)(L+N—p—l) I ‘ N-i 2

=(l+P_l)(I+N_P_l)JdXsmn X~QL1(X)t, (3.1)

where

H* A*H H1~H”’”~dQN, (3.2)

anddQN is the volumeform on 5N (Theasteriskindicatescomplexconjuga-
tion.) We haveassumedthat the (p — 1)-form H~’°~on S”’~ is normalizedby
(P(10)FI(l0)) = 1. Let the normalizedeigenformsH~”°

1= “L1H~”~satisfy
(fJ(Lla)p(LIcJ)) = 1. The normalizationfactor Is/Li can be found from (3.1)
as

(7 +p— 1)(l + N—p— 1) 1/2= p(L+p)(L+N—p—l) NL,, (3.3)

where NL, is the normalizationfactor for the scalarcase[7] given by

NLI = [

21+N_2v2r(/ + iN)]

2L+N—1(L+!+N-2)! 1/2
2 (L—!)! . (3.4)

The degeneraciesaregiven by

DN(L,p)= ~ JdQNR*.uI=QNiim ~ P*.R (3.5)
L fixedS L fixed

whereH(i) . H~ H~.~~H(2)P1~P,andwherethe summationis over all the
normalized solutions H with the same“angular momentum”label L. We have
usedthe fact that >L fixed H is constantover SN. The volumeof 5A’ is
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QN = 2it +i)/
2/p(l(N + 1)). (3.6)

Now, we find from the rotational symmetry of ~L fixed ~ H

lim H~’. P = N lim ~ H(LlU)* ~(L1a)xlt...1p_i , (3.7)
x1l..jp_ILfixed . f

We find from (2.15) that H~f~~*H(l~b0)Xhtp~1—+ 0 fort —~ 0 if 1 ~ 1. Hence

DN(L,p) = NQ~ JVLi~DN_I(l,p 1), (3.8)

where we haveused(sinX)’QL/(X) —‘ I fort —+0 and

fj(Iri) = D~_
1(I,p — 1) . (3.9)

An explicit evaluation of (3.8) using (3.3) and (3.6) leadsto

(N—p)(2L + N— l)(L + N— 1)!
DN(L,p)= (L+p)(L+N_p_l)N!(L_l)!~_l ,p 1). (3.10)

For L = 1 we have

N+l (N+l)!
DN(l,p) = ~ 1DNi(l,p—l) = (p+ l)!(N—p)!’ (3.11)

wherewe haveusedD,,, (1, 0) = N + I. Hencewe obtain

(2L + N- l)(L + N— 1)!
DN(L~P)=!(Nl)!(L])I(L)(LNI). (3.12)

in agreementwith Refs. [14,23,24].

4. The Plancherel measure on H”’

The c-functionof the Hodge—deRham operatoracting on coclosedp-forms
on H”’ is defined as the Mellin transform of the trace of the heat kernel

~ fdttz_iK~...~~P10P(x,x,t). (4.1)

Herethe heat kernel is definedby

(a/at+ Ix)Kp...~~v1~(x,x/,t) = 0, (4.2)

~ ~“ (x,x’, 0) = ~ (x,x’) , (4.3)

where ~ ...~“ ‘~ (x, x’) is the integral kernel for the projectionoperatoronto
the space of coclosed p-forms. Homogeneity of the hyperbolic space implies
that the right-handsideof (4.1) is indeeda functionof z only.
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Now let the coclosedp-eigenform~ (x) satisfy

= [22+ (p—p)2]h~, (4.4)

where u is the discrete label for distinguishing eigenforms with the same
eigenvalue,and where p (N — 1 )/2. As we shall see,A is real and can be
takento be positivefor the continuousspectrum(seealso [10]). It can easily
be seen from 4 = Od + dO that a coclosedp-eigenformwith positive A is
coexact. (For this reasonwe shall often call the Plancherelmeasureobtained
in this sectionthe Plancherelmeasurefor coexactforms.) Let theseeigenmodes
be normalizedas

(Au) ~ (Au’)) ~(Au)* A *h(A’u’) = O~~’0(2 — A’). (4.5)

The heat kernelcanbe expressedin termsof h~L~(x) as

~ Up (x x’ I)

= ~ f dA~ (x)/i (Au)v
1 Up (x’ ) *e_ k

2 + (p_p)2) It (4.6)

if thereare no discreteeigenvalues.This expressionmust be modified for N
even and p = ~N due to the existence of square-integrable harmonic forms
(seethe next section).

By using the modeexpansion(4.6) in (4.1) we find

= Q~g(p)fdA[
22~A))2],, (4.7)

wherethe Plancherelmeasurep (A) is definedby

(2) QN-1 ~ ~(2u)* h(Au)(o) (4.8)cNg(p)

[Eq. (4.7) becomesundefinedfor N odd andp = p, but Eq. (4.8) still serves

as the definition of p(2).] The factor QN—i is the volume of 5N1 given by
(3.6) with N —* N—l, andthe “spin factor” g(p) is the numberof independent
componentsof a coexactp-form given by

(N- 1)!
g(p) = p!(N—p—1)!~ (4.9)

Unnormalizedsolutionsh (Au)(x) can beobtainedfrom the resultsin Section
2 by letting x = iy andL = —p + iA, wherey is the geodesicdistancefrom the
origin on H”. We needonly the eigenformswith h~1 (0)h(~~Y~I1p_1(0) ~
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0 to determinep(2) from (4.8). This is becausethe rotational symmetry
aroundthe origin leadsto

~ /~(~~u)= N~ hJ~’~,(Q)*h(AU)Yli(p (0) (4.10)

These p-eigenforms areobtainedby analytically continuing the eigenformson

5N given by (2.15) and (2.18) with / = 1. To determineh~1 completely,

we need to evaluate the normalization factor. Define /i~

The normalizationintegralfor the unnormalizedp-eigenformsh’~’°(x) can be
turned into a surfaceintegral [7]

~ h~’u’))= ~ sinh~’

~f dQNi (hAu* . ~h(2’u’) — ~ . h(~’u’))~~=i1 (4.11)

We find that only the ~ componentscontribute.The large-j’ behaviorof

h~°~can be found from (2.18) and

~i (~) Q(-p+iA)l (iy) i’ [ci(A)e”~’~+ (A —2)] , (4.12)
where

c1(2) = 2~’
2T(l + ~N)F(i2) (4.13)

~F(i2 + ~(N- 1) + 7)

(seeRef. [7]). We find

h°~°~ jl+P (sinhy)”

x [(iA + p _p)ci(A)e~~”~’YpV
111P~~~~1+ (2 —A)] (4.14)

unless i2 = ±(p— p) with p � p. Fromthis we find that 2 must be real or
~i(p — p) for the p-eigenformto be normalizable.Here we let 2 be real and
positive sincewe areconcernedwith the continuousspectrum. (Note that the
replacementA —‘ —2 leavesthe eigenformunchanged.)We shall comebackto
the casewith imaginaryvaluesof A in the next section.

Substituting (4.14) in (4.11), we obtainup to a phasefactor

~ ~N(/+P1)(/+NPl) (415)
Al — ~[22 + (p_p)

2]i/2c
1(2)

Then, the Plancherel measure p (A) for coexact p-forms is obtainedby the
procedurewe usedfor the degeneraciesas
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N 2
~IA~til DNi(l,p—l) (4.16)

cNg i,p,

= __________________ F(iA+p+ l)~2 (4.17)

[2N2r(4N)] [22+ (p -p)2] T(i

Written explicitly Eq. (4.17) reads

ft(22+12), Nodd, (4.18)
[2N_2F(~N)J [22+ (p —p)2] 1=0

= it2tanh(itA) ft (22 + 12), Neven. (4.19)

[2N_2r(~N)] [22 + (p —p)2] j=i/2

For p = 0 andp = 1 thesecoincide with the known expressionsof p (2)
for scalars[3] and divergencelessvectors [7], respectively.The Plancherel
measurefor exactp-formsis obtainedby letting p —* p — 1 in theseformulae.

For N odd, p(A) is clearly a polynomial in 22 (the apparentpoles at
2 = +i~p— p~are eliminatedby the correspondingfactor in the product over
1). For N even, p (A) can be continued to a meromorphicfunction in the
complexA-plane, with simple poles on the imaginaryaxisat

A = ±i~p—pt, +i(p + l),+i(p + 2),...,±ioc. (4.20)

We can now easilyverify thefollowing relationbetweenthe degeneracies(3.12)

of I on SN andthe p-form Plancherelmeasurep (A) on H”:

Theorem 4.1. ThePlancherelmeasurep(A) on H” satisfies

p(i(L+p)) — DN(L,p) L— 12 (421)

p (i(l + p)) — DN(l,p)’ — ,

where for N even the /eft-handside meansthe ratio ofthe residuesofp (A) at
thegiven points.

Proof Using (4.17) for p(A) we seethat the factor [22+ (p _p)2]i gives,at

A = i(L + p), the last two terms in the denominatorof DN(L,p) in (3.12).
The remaining (L-dependent)terms in (3.12) arisefrom calculatingthe ratio
of F-functionsin (4.17) at 2 = i(L + p) andA = i(l + p), andsubstituting
on the left-handsideof (4.21). The prooffor the exactp-formsfollows simply
by letting p —~ p — 1 and repeatingthe sameargument.

This result is analogousto thoseobtainedin Refs. [5,7] for Dirac spinors
and for the symmetrictransversetracelesstensorfields on H”’.
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5. Square-integrable harmonic forms

The coclosedforms on H”’ which areobtainedby analyticcontinuationfrom
the p-eigenformson

5N with F~ = 0 in Section 2 [see (2.19)] cannot be
square-integrable.This is becausethe normalization integral reducesto that
for the scalar field in this case. We have seen in the previoussection that
square-integrable coclosed p-eigenforms do not exist unless /A = p — p > 0.
This implies that 4h = 0, i.e., a square-integrable coclosed form must be
harmonic. Furtherexaminationof the asymptoticbehaviorof theseharmonic
forms reveals that the dimension N must be even andp = ~N. Then, we
find that these forms are indeed square-integrable.They are given as follows
(compareto Thm. 4.4 of Ref. [10]):

2/ + N — 2 i/2 1 l+N/2-I
h,T/l...iN/2_I = N sinhy (tanh~ H,...1~.,2, (5.1)

N i/2 l+N/2—i
= 21 + N — 2 (tanh5v) V[iIHj2...iV/2], (5.2)

whereP is an (~N— 1)-form on 5Ni satisfyingIP = (1 + N/2 — I )2~, and
1= 1,2,. . . , oc. The normalization factor has beendeterminedby requiring
(h, h) = 1. The form h can be reexpressed in terms of a harmonic (~.N — 1)

form as

h=dA, (5.3)

where

A5~jI...jN/22 = 0, (5.4)

2 /+N/2—l
= ~N(2l + N —2) (tanh~ H1...1~12. (5.5)

The square-integrableharmonic~N-forms are both closedand coclosed.This
result agreeswith a general theoremof Andreotti and Vesentini (see [11]).
Note that the harmonic (.~N — 1)-form A is not square-integrable. There are
other linearly independentharmonic (~N— 1)-forms (with Ai,jl...jN/22 � 0),
but they are exact themselves and, therefore, give zero when substitutedin
(5.3).

Note that the harmonic forms given by (5.1) and (5.2) constitute a reducible
representationof 500(N, 1) becauseonecan require*h = +iA’/

2h. Define

i”’!2
H~/N/

2l*dH. (5.6)
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Then we find that *h = +i”’/2h if andonly if P = ±P.In Section 6 this
reduciblerepresentationwill be identified as the directesumof two irreducible
representationsin the “discreteseries”of S0

0(N, 1).
There is a discrete contributionto the Plancherelmeasurefor N evenand

p = ‘~ dueto the square-integrableharmonicforms. For example,the traced
heat kernelfor coclosedfforms on H”’ is

TrK(t) cNg(~N) (JdAPN!2(A)e
2+i/4)t + P0) , (5.7)

wherePN/2 (A) is the continuouspart of the Plancherelmeasurefor coclosed
~N-forms. The constantP0 is the contribution from the harmonic forms
definedby

p~mCNg(~N) ~h*.h(0), (5.8)

where the summationis over all normalizedharmonic forms [compare this
with Eq. (4.8)]. Substitutingthe solutionsgiven by (5.1) and (5.2) in (5.8)

we find

mN

P0 =

22N—3 = 2iri respN/2(A)1A_l,/2. (5.9)

6. Group-theoretic derivation of ~u~)

As observedin the introduction, the Plancherelmeasurefor an arbitrary
vector bundleET overa noncompactRiemanniansymmetricspace(SS) G/K
can be obtainedfrom the Plancherelmeasurefor scalarfunctionson the group
G. The reason is that the space L

2 (G/K, EX) of square-integrablesections
of ET sits in L2(G) in a natural way. Indeed it follows easily from the
Peter—Weyl theoremfor L2(K) combinedwith the theorem on inducing a
representation“in stages”,that the regular representationit of G on L2(G)
is unitarily equivalentto the direct sum of the inducedrepresentationsir~
of G on L2(G/K,ET) for r E K (the set of equivalenceclassesof unitary
irreduciblerepresentationsof K). Eachn~appearsa numberof timesequalto
d

1 dim (t) [27]. Thus we can write

(it,L2(G)) ~dT (it~,L2(G/K,E~)), (6.1)
r�k

where meansequivalenceundera unitary operator.The Planchereltheorem
for L

2 (G) is the direct integraldecompositionof it overtheset O of equivalence
classes of irreducible unitary representations (IURs) of G. The measure in this
decompositionis known as the Plancherelmeasure.Let g —+ U(g) be an IUR
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of Gon a Hilbert spaceV andlet f be a smoothfunctionon G with compact

support.Considerthe operator

U[f] ff(g)U(~)dg. (6.2)

If {v,} is an orthonormalbasis of V the formal trace ~~(U(g)v,, v,) is generally
ill defined.Define instead

TrU[f] ~ff(g)(U(~)vi~vi)dg. (6.3)

This trace can be shown to exist (and to be independentof the basis) and
the mapf —* ~9,’ [f] is called the g/obal characterof U [25]. This is just a

distribution on G, i.e. a continuouslinear functional on the spaceof smooth
functionsof compactsupport.Moreover E.Iu is uniquely definedby a locally
integrablefunction E~’(g), in the sensethat

9u[f] =ff(geu(g)dg. (6.4)

The inversion formula is the expansion of f(e) (e is the identity of the group)

in terms of the global characters:

f(e) = feci[f]dP(u)~ (6.5)

wheredp (U) is the Plancherelmeasure.The value of f at any other point
(i.e. the analogof Eq. (1.8)) may be obtainedby

f(g) = fTr[U[f]U(g1)]dp(U) = f&u[foRg]d~(U). (6.6)

Theseformulaeareequivalentto theP/ancherel formula for f ~ L’ (G)flL2(G)

[37]:

flf(g)l2dg = fIIU[f]112dP(U), (6.7)

where

IIU[f] 12 = Tr [U [f]U[f]t] (6.8)

is the Hilbert—Schmidtnorm of the operatorU [f].
Now let G(r) be the set of those U ~ G such that UIK ~ t. Let m(t, U)

denote the multiplicity of t in UIK (it is known that m(r, U) < dr, see
[15,25]). Combining the Planchereltheoremfor L2(G) with (6.1) gives the
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following direct integraldecompositionfor the inducedrepresentationit
1 (see

Lemma 1 of Ref. [27]):

m~ f m(x,U)Udp(U). (6.9)

G(r)

This resultmay beregardedas a generalizationof the classicalFrobeniusReci-
procity Theoremto the noncompactcase.That is, the multiplicity with which
U occursin it1 coincideswith the multiplicity of t in UIK. The corresponding
direct integral decompositions of L

2(G) andL2(G/K,E1) maybe regardedas
the spectraldecompositionsinto eigenspaces of the Casimir operators. In order
to determinethesedecompositionswe do not needto know all of the IURs of
G. All we needarethe IURs with nonzeroPlancherelmeasure,the supportof
dp(U) being in generala propersubsetof G. It is well known (seee.g. Refs.
[25,37]) that for a noncompactsemisimpleLie group with finite centerthe
IURs that appearin the Plancherelformula arethe so-calledgeneralizedprin-
cipal series (constructedfrom a completeset of cuspidalparabolicsubgroups
by the methodof inducedrepresentation)and the discreteseries (the IURs
with square-integrablematrix coefficients),which exist if and only if G hasa
compact Cartan subgroup, i.e., if and only if rank G = rankK. The Plancherel
measure for L2(G) has been determined explicitly by Harish—Chandra (see
Ref. [25]).

We shall now apply theseconsiderationsto G = SOo(N, 1), K = SO(N),
G/K = H”’. Actually H”’ may also be regardedas the coset Spin(N, l)/
Spin(N), where Spin(N,1) and Spin(N) denote the double coverings of
SO,J(N,1) and SO(N), respectively.(For N > 2 theseare also the universal
coveringgroups.) In this way one can discussspinor bundlesover H”’.

It is well known (e.g. [37, vol. II, pp. 41—42]) that m(t, U) = 1 for any
r and any U. For N odd all Cartan subgroupsof G are conjugateand there
are no discreteseries.For N eventhereare two conjugacy classesof Cartan
subgroups, one for a compact Cartan subgroupcontained in K, the other for
a noncompactCartan subgroupwith one generatorin G/K. In this casethere
arediscreteseries.If the irrep r of SO(N) is containedin somediscreteseries
the vectorbundleE1 hassquare-integrableeigenmodes(of the Laplacian).An
exampleof this will be seenshortly. For the Lorentz group (morepreciselyfor
its double cover Spin(N, 1)) we havethe following explicit formulae, dueto
Hirai [22].

1. N = 2k + 2 (k = 0, 1,2,...): The principal series representationsare
denotedby U(jA,e), where i = ~ A is a real numberanda = (n

1,n2,... , nk)
is a row of numbersthatareeither all integersor all half odd integerssatisfying

0 ~ fli ~ <~.. <nk (6.10)



74 R. Camporesi, A. Higuchi/Journal of Geometry and Physics 15 (/994) 5 7—94

Notice that a defines a representationof M = Spin(N — 1). Define i~=

n1 + j — ~ (1 = 1,2,. . . , k), anddenotethe global characterof U(~0)by ~

9(A.a)

Therearetwo setsof representationsin the discreteseriesdenotedby U(~
0)

andU~oa)~wherea is definedas aboveand n0 is integeror half odd integer
at the sametime as the otherlabels andsatisfies

~<no<nl<n2<~<nk. (6.11)

(For n0 = wehavethe two “limits of discreteseries”which areIURs but are
not square-integrable.)DefineI~(1 = 0, . . . , k) as above,anddenotethe sum
of the characters of U(~0U)and U(fla) by

61(fl

0,a)~ Then the inversionformula
(6.5) takes for k � I the form

4

cf(e) = ~ fiP(_iA~/t lk)g(A)&(Aa) [f]d2
0

+ ~ P(1
0,/i,. . ‘,Ik)9(npa) [f], (6.12)

O</O</l<<fk

wherec> 0 is a normalizationconstant,

— f tanh(itA), I, half odd integers, (6 13)
g — ~ coth(itA), 1, integers,

and P is the following polynomial, correspondingto the product over the
positiveroots of the SO0(N, 1) (or SO(N + 1)) Lie algebra:

P(x1,x2 Xk+i)=XiX2...Xk+I fi (x~—x,~). (6.14)
l<s<r<k-~-I

Fork = 0 (i.e., for SL(2,71))the continuouspart is the sumof two terms, one
with g(A) = tanh(itA) and the other with g(A) = coth(itA), see [25, p. 42].
For a fixed a the continuouspart of the Plancherelmeasuredp ( L~0~)=

p0(A)dA hasthe following A-dependence:

p0(A)~A(A
2+l~)(12+7~)...(A2+I~)g(A). (6.15)

wherethe proportionalityconstantdependson /j.

2. N = 2k + 1 (k = 1,2,...): The principal seriesrepresentationsare
labelledby U(~

2,0),A E 71, a = (n1, n2 nk), wherethe numbersii~areeither

all integersor all half odd integersand satisfy

Inil<n2<~<nk. (6.16)

‘~We havecorrectedthe continuouspart by a factorof 2. This makesthe formula consistentwith
Ref. [281.
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The number n1 can be negative and again a defines a representationof
Spin(N— 1). Let /~= n1 + 1—1,1 = l,2,...,k. Then the inversionformula
reads

cf(e) = ~ JP(iA~li~. . . ,‘k)
6(A,a) [f]dA, (6.17)

hi <12<<tk 0

where c > 0 is a normalizationconstantand P is a polynomial corresponding
to the productover the positiveroots of the SOo(N, 1) (or SO(N + 1)) Lie
algebra:

P(xi,x
2,.. . ,Xk+i) = []~ (x~— x~). (6.18)

I<s<r<k+ i

For a fixed the Plancherelmeasureis just apolynomial in 22:

cx (A
2 + /~)(A2+ ~2), (22 + li). (6.19)

Now let t be an irrep of Spin(N) and let E1 be the correspondinghomo-
geneousvector bundleover H”’. As we shall see in Section 9, the coincidence
limit of the tracedheat kernelfor the fields (on a SS G/K) definedby t E K

(i.e. the sectionsof ET) is given by

TrK(t) = f m(r, U)e°dldp(U), (6.20)

O(r)

where —WU arethe eigenvaluesof the second-orderCasimir operator(—A in
our case),andwherethe volume of the compactgroupK is normalizedto one.
Therefore,in order to find the Plancherelmeasurefor the fields definedby r
we simply haveto identify the IURs in the Plancherelformula for Spin(N, 1)
which containt upon restrictionto Spin(N). Thuswe needthe branchingrule
for Spin(N, I) ~ Spin(N) for principal and discreteseries (see e.g. [30]).
Again we distinguishthe caseswith N odd andN even.

Let N = 2k + 2 and let t be the irrep of Spin(N) labelledby (fl,f2,...,

.fk±i), wheref are either all integersor all half odd integerssatisfying

fiI~f2~~fk+i, (6.21)

andf~can be negative.Thenthe principalseriesrepresentationU(~),
0)contains

t if andonly if

IfII<ni<f2<n2<<fk<nk<fk+i. 6.22

Using the branchingrule for Spin(N) D Spin(N — 1) it is easyto see that
(6.22) is equivalentto the conditionthat r containthe irrep a of Spin(N— 1).
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Thereforewe have the following result: U(1A0) contains t if andonly if t

containsa, i.e. in symbols

tIspin(A’_i) = ~a1 D a ~t=z~’ LT(jAa)ISPIO(N) D t. (6.23)

Thisduality is aconsequenceof the FrobeniusReciprocityTheorem.To seethis
let us recall that the representationsin the principal seriesof G = Spin(N, 1)
(labelled by (A,a), where A is a real numberand a is an irrep of Al =

Spin(N — 1)) are inducedby the (finite-dimensional)unitary representations
of a minimal parabolicsubgroupP = MAN, where G = K.4N is an Iwasawa
decompositionof G [35,37]. Since every elementof G can be written as kp,
with k in K andp in P, induction from P to G looks on K like induction
from P n K = Al to K. It follows that the restriction U(,A0) K is just the
representationof K = Spin(N) unitarily inducedby a, andthatfor eachvalue
of A the representationspaceof (A, a) may be identified with L

2 (K/Al, E0),
see Ref. [35. p. 219]. Thereforeby the quoted theorem, the multiplicity of
a given i e K in U(IAC)IK coincideswith the multiplicity of a in rl~j.(This
result generalizesto arbitraryRiemanniansymmetricspacesG/K if U(f~

0)~S

a representationin the principal series associatedwith a minimal parabolic
subgroup,see Ref. [37, vol.1, p. 450].)

A moregeometricinterpretationof Eq. (6.23) is as follows. Accordingto the
so-calledpolar coordinatesdecomposition[19], a (noncompact)Riemannian
SS G/K is diffeomorphicto ,4~x K/Al (up to a zero-measureset),whereA~
is a fundamentaldomain of the Weyl group in A and Al is the centralizer
of A in K (i.e. the set of elementsin K which commutewith .4). The coset
spaceKIM is diffeomorphicto the orbits of K in G/K. When a field on G/K
(definedby r E K) is restrictedto the K-orbits, we obtain a set of fields on
KIM. These fields are sections of vector bundles E

0’ over K/Al definedby
irreps a

1 of M. In our casethe abovedecompositionreadsHN ..~71+ x

and the representationsa1 are all different, since for the orthogonalgroupsa
given a can not appearin r more thanonce.For exampleif r is the defining
vector representationof SO(N), E

T is the tangentbundleover Hj”’. When we
restricta vector to

5Ni we get a vector anda scalar, i.e. ~ = ai EE~ai,where
a1 is the trivial representation of Al and a2 is the vector one.

Nowaccording to (6.23), the principal series that contain r and enter in the
decompositionof the inducedrepresentationit1 (i.e. in the right hand side of
(6.9)) are precisely those labelled by (A,a1). In the previous example we have
that the principal seriescontributingto the harmonicanalysisof vector fields
over H”’ are of the form (A,a1) and (A,a2). It is possibleto show that the
matrix coefficientsof the irreps (A, a1) give longitudinal vectors (J~,= Vaf,

with .1 a scalarfunction), andthe matrix coefficientsof the irreps (A, a2) give
transversevectors (V,,V” = 0) (see [2, Prop. 4.1 and4.2]).
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Concerningthe discrete series,which exists only for N even,we havethe
following branchingrule. A representationin the discreteseries, U~00),con-
tains t = (fi,.. .,fk+i) if and only if, in addition to (6.22), the following
condition is satisfied:

~ <n0 < +f~<n1. (6.24)

Thus fi mustbe nonzero(positive for U~00),andnegativefor U~00)).
Now, let us determinethe IURs appearingin the right hand side of (6.9)

for p-forms on H”’. For N = 2k + 2 the bundle of p-forms (i.e. totally
antisymmetrictensors)on HN is definedby the following irreps t of SO(N):

p=0,2k+2: t=

p= 1,2k+ 1: r= (0,...,0,l);

p = 2,2k: = (0,...,0,1,1);

p=k,k+2: z=(0,1,...,l)

p=k+1:

Thebundlesof p-formsand (N—p)-formscorrespondto the samer as a con-
sequenceof duality. Notice that for p = k + I = N/2 the bundleis reducible.
Fromthe discussionabovewe see that the only p-formscontainedin the dis-
creteseriesareforp = k+ I, namelyr±c U~00),where(no,a) = (1,..., 1).
This identifies the square-integrablek-forms on H

2k found in Section 5 (see
also Ref. [10]). The discretepart of the Plancherelmeasure(i.e. P(la,.. . , I~)
in Eq. (6.12)) is essentiallythe formal degreeof the discrete series(see Ref.
[37, vol.11, p. 407]). In our casel~= I + ~ anda simple calculationgives

P(~,...,k + = (k+l)!22k+211
1(25). (6.25)

Theconstantc in (6.12) is determinedto be 2it~~’JJLI (2s)! usingEq. (6.20)

for the scalarcase.Then we have

—P(~,4,..., k + =

2~N, g(~N)p
0, (6.26)

where p~is given by (5.9). This is half the discretecontribution in (5.7).
The reasonfor this is that the square-integrableharmonic ~N-forms belong
to the reducible representationU~00)~ U~00)of 500(N, I). According to
(6.20),eachdiscreteseriescontributesa term (l/c)P(1/2,3/2,...,k+ 1/2) to
TrK(t). The result in Section 5 is then reproduced.
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Concerningthe principal serieswe obtain [using (6.22)] the following list
of irrepsa = (n1) suchthat (A,a) D r:

p = 0,2k + 2: a = (0,...,0); (6.27)

p = 1,2k + 1: a = { (O...Oi)~ (6.28)

p= 2,2k: a = { (U,.:.:O:1,1); (6.29)

p= k,k +2: a = { ~ (6.30)

p = k + 1: a = (1,1 1) for both r~. (6.31)

For p = 0, 2k + 2 andp = k + 1 we havea “singlet”, for the other values of
p we get a “doublet”. If we form the numbersI~andcalculatethe continuous
part of the Plancherelmeasureaccordingto (6.15) we find perfectagreement
with the results of Section 4, in the following precise sense. For p = 1,. . . , k
the secondmemberof each doublet corresponds(using (6.23)) to coexact
p-forms andthe Plancherelmeasurecoincideswith thatobtainedin Section4.
The first memberof the doublet correspondsto exact p-forms and we verify
that the Plancherelmeasuresfor exactp-forms and for coexact (p — 1)-forms
areequal.Forp = k + 2,. . . , 2k + 1 the role of the two membersof a doublet
is reversed,i.e. the first correspondsto coexactforms andthe secondto exact
ones.For p = 0 (p = 2k + 2) we obtain the right result for coexact(exact)
forms, i.e. scalars.Finally for p = k + 1 we obtain the right result for exact
forms and for coexactones (with the samePlancherelmeasure).In all cases
we verify the equality of the Plancherelmeasuresfor exact p-forms and for
coexact(p — 1)-forms andof thosefor coexactp-formsand (N—p — 1)-forms.

Let N = 2k + 1. The branchingrule for (A,a) ~ = (fi .fk) is

nil<fl<n2<f2<...<nk<fk. (6.32)

This is equivalentto t ~ a and (6.23) is againtrue. The discussionproceeds
as before. For p = 0, 1,...,k the irrepsof SO(N) definingp-forms are given
by fj = 0 (i = l,...,lk—pl) and fi = 1 (i = Ik—pi + 1,...,k). For
p k + 1,..., 2k + 1, T is the sameas for (N — p)-forms. All bundlesare
now irreducible.Applying (6.32) for p = 0,.. . , k — 1 (andthe corresponding
(N — p)-forms) we get the samelist of a’s we hadbefore, i.e. Eqs. (6.27),
(6.28), and so on. For p = k,k + 1 we obtain a “triplet”, namely a =

(e,1,...,l) where r = 0,+1.
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Using (6.23) we see that for p = 0 (p = 2k + 1) we obtain the right
result for coexact(exact) forms, i.e. scalars.Forp = 1, . . . , k — I the second
memberof each“doublet” correspondsto coexactp-formsand givesthe same
Plancherelmeasureobtainedin Section 4 with c = 2it ik!Bi~(2s)! in Eq.
(6.17). The first memberof eachdoublet correspondsto exact p-forms. For
p = k + 2,. . . , 2k the role of the membersof each doublet gets reversed.
Finally for p = k the terms of the triplet with c = ±1(� = 0) correspond
to coexact (exact) k-forms, while for p = k + 1 it is the opposite.A duality
operatorsimilar to (5.6) can be defined on coexactk-eigenforms.The two
IURs with e = ±1 have oppositeeigenvaluesof this operator.In all caseswe
againverify the identities (2.2) and (2.3).

7. The c-function on H” and 5”’

Let N be odd. The p-form c-function (4.7) is well definedfor Rez > N/2

and p ~ p. For p = p the spectrum extends to zero, w (A, p) = 22, and
we needto introduce a massparameter,i.e. to considerthe zetafunction of
I + m2 with m~ 0.

First let p ~ p. In order to define the c-function for the other valuesof z
we perform analyticcontinuationin z. We definethe numbers~ by

[A2+ (pp)2] H~~2~J2) ~~(P)
22k (7.1)

The integration in (4.7) can be performedfor Rez> N/2 usingEq. (3.251.2)
of Ref. [161. The result is

— g(p)
— (4it)”!

2F(~N)
V~ (p)

2k_2Z+1F(k + ~)F(z — k —

XL~LtkNIP_PI F(z) (
k= 1

For p = p the c-functionof I + m
2 is

(H) [ p(A)dAc (z) = ~(P)bNj (22 + m2)1’ (7.3)

where

bN = = ~ (7.4)

Defining ~ as in (7.1), with the sumover k in the right handside starting
at zero, we obtain
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~(H) 1) — g(p)
~zJ+rn2~ — (4it)IV!

2F(~AT)

X~~,,fl2k2~ + ~)F(z-k—~) (7.5)

The c-functions (7.2) and (7.5) exhibit “trivial” zerosat z = 0, —1, —2
They are meromorphicin the complexz-planewith simple poles at

z = ~N, ~N — 1...., —oc, (7.6)

in agreement with general theory [26].
Let now N be even. The c-function (4.7) is well definedfor Re~> N/2

and for anyp = 0, 1 N — 1. Defining the numbers~ by

p (N—2)/2

[22+ (p_p)2]H +1~ fl~A2k (7.7)

and using the identity

tanh(itA) = I — 2 (7.8)e2’~+ 1

in (4.7) we obtain

g(p)
— (4it)”/2F(~N)

l)T(z-k-l)

I A2k~d2

(e2~+ 1)122 + (p_p)2P (7.9)

The last term in this expressionis analytic in z. The first term carriesonly a
finite numberof simple poles at

z = ~N,~N— 1 1, (7.10)

againin agreementwith Ref. [26]. (Note that the eigenvalueof the discrete
modes for p = .~N is zero. Hencetheyareexcludedin defining thec-function.)

Considernow the zetafunction of I actingon coexactp-forms on 5”,

= ~DN(L,p)wZz, (7.11)
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whereDN(L,p) are the degeneracies(3.12) andthe eigenvaluesO~L, given in
(2.7), can be rewritten as

WL = (L + p)2 — (p—p)2. (7.12)

For p = 0 (scalars)I hasa zero mode which is omitted from c(s).
Now assumethatN is odd andp ~ p. Using Theorem4.1 andthe definition

(7.1) we can expressthe degeneracyDN(L,p) as an evenpolynomial in the
variable (L + p):

D~’(L,p) = AN,p~(l )~s~ (L + p)2k, (7.13)

where

— itDN(l,p) 2g(p)(—l)P
AN,PZZ 2 = . (7.14)

p(i(p + 1)) [2”’2F(N/2)] (N- 1).

The zetafunction (7.11) becomes

=

2

~ (L+~)2z-2k [i_ (UP)] . (7.15)

We can now usethe binomial expansion

(l_x)2 ~F(z±n)x~ (7.16)

in (7.15) andexchangethe sumsoverL andn. In fact (7.16) holdsfor lxl < 1
andthecondition(p—p)2 < (L+p)2 isalwayssatisfiedforp=
and L = 1,2 We obtain c~~zias a series of Riemann—Hurwitzzeta
functions ~R(z,q),

=

x~T±~)_~2~cR(2z+2n2k,p+l), (7.17)

where [16]

cR(z,q) = ~(n + q)Z, Rez> 1. (7.18)
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The function c~~zis meromorphicin the complexz-planewith simple poles
given by (7.6), the same as for c~”~(—).it is not difficult to show that c (S)(z)

vanishesat the negativeintegersbut not at z = 0. [Recall that c~”1(o)= 0.]

Indeedusing

cR(z,p + 1) = cR(z) — ~ (7.19)

where cR(z) = cR(z, 1) is the Riemann zeta function, and ~R(—2q) = 0.
q = 1,2.... [16], we havefrom (7.17)

=

X ~ n~(q—n)’ (_1)fl(p ~)2n/2(q-n)

11=0

= AN.P ~(J )k~~(P)/2k[/2 — (~ ~)2]q (7.20)
k=i /=1

where we have used the binomial theorem. Remembering (4.18), (7.1) and
(7.14) we seethat the sum overk can be rewritten as

= p(iL) cx ft (]2_/2). (7.21)
I j=0,j~

Now as / = 1,2,..., p this vanishesunless I = p — vl. Thereforethe terms
with / ~ p — p~do not contribute to the sum over I in (7.20). Since the
contributionof the term with / = — ~l also vanishes,we finally have

= 0, N odd, q = 1,2 (7.22)

For z = 0 we obtain instead

= _~“~

1~))P(ilP -p~)= (-l)~’. (7.23)

For N odd and p = p the degeneraciescan still be written as (7.13) with
the sum in the right starting at k = 0. The zetafunction reducesto a finite
sum of Riemann—Hurwitzfunctions

= ~ — 2k,p + 1). (7.24)

Using Eqs. (7.19) and (7.21) (with the sumover k startingat zero) it is easy
to see thatwe can replacecR(

2z— 2k, p + 1) by cR(2z— 2k) in this formula.
The functionc~~(~)carriesonly a finite numberof poles at

= ~N, .~N— I ~, (7.25)
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andvanishesat the negativeintegers,whereasat z = 0 it equals

c~~(o)= 2~(1(~~1))P(O)= (_1)P~. (7.26)

Sincethe residuesof the zeta function at z = ~N — n areproportional to the
heat kernelcoefficientsa~,n = 0,1,2,..., [4] we see from (7.25) that for N
odd andp = p the Minakshisundaram—DeWittexpansionof the heat kernel
of I on 5N terminatesat n = p, i.e. a~= 0 for n > p.

For N evenwe can proceedin a similar way. From Theorem4.1 and (7.7)
we canexpressthe degeneraciesas an odd polynomial in (L + p):

(N—2),’2

DN(L,p) =

13N,p ~ (_l)kfl~P~,(L + p)2k+i (7.27)

where

— 1DN(l,p) 2g(p)(_l)(”’2~!2
13N,p 2 = . (7.28)

resplA/(p+i) [2”’2F(N/2)] (N — 1)!

The expressionfor the zetafunction, analogousto (7.17), is

(N—2),’2

~

1\kQ(Ji)
i, ~,ZJ

5~N,p ~‘J

x +n)(P_P)2~c(2z+ 2n — 2k — l,p + 1). (7.29)

The functionc(S)(z) is meromorphicin the complex .z-planewith simplepoles
at the samevalues (7.10) as for c~51~zI.

8. The relation betweenc(skz and c (H~z)

In the previoussectionwe havedeterminedthe analyticcontinuationof the

p-form zeta functions on H”’ and S”’. Although they exhibit similar analytic
properties,we did not establisha relationshipbetweenthem. In this section
we obtain this relationby meansof complex contours.

The eigenvaluesWL of the Hodge—deRham operatoracting on coexactp-
forms on

5N aregiven by (7.12).The eigenvaluesof I on H”’ maybeobtained
from WL by replacingL by iA — p andchangingsign, i.e.

w2=A
2+ (p—p)2. (8.1)

We needto discussthe even andodd dimensionalcasesseparatelysince the
Plancherel measures have different analytic properties in the two cases.
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-R+iR F R*iR

— _______ ________

A

Fig. 1.

8.1. N even

Let b p —p~and considerfor Re~> ~.N the integral

I ~ p(A)dA (87)
J~(~A2~h2):
F

over the contourF shown in Fig. 1. We define the phaseby letting (—A2 —

b2): = I _A2 — b2~on the segmentjib, +ioc]. The integrandhastwo branch
pointsat A = ±ib.The cutsarechosento run from ib to ib — ~ andfrom —ib
to —ib + cxc. The contourF is a rectangleof vertices (—R,R, R + iR, —R+ iR)
deformedaroundthe cut at ib to the contoury consistingof a small semicircle
of radius � centeredat ib and of the segments [i (h + c) — R,i (b + �)],
[i(b — c ), i(h — icc) — R]. The point iR lies betweenconsecutivepoles, i.e.,

p + n + 1 <R < p + n + 2. (8.3)

The integrandin I is analytic inside the contourF except for the simple poles
on the imaginaryaxis [see(4.20)].By applyingthe residuetheoremwe obtain

n+1 p
I = 2iti res (22_ h2’~z (8.4)

/ ).=i(p+L)

Consider now the limit R,n —+ oc. As long as Re:> 4N the integralsover the
sides of F other than the real line and y tend to zero in this limit. To see this
define f(A) from Eq. (4.19) according to

p(A) = ittanh(itA)f(A). (8.5)

Now the function tanh(itA) is boundedover the sides of F and f(A) is a
polynomial in 2 of order N — 1. Thereforethe leading terms of the integrals
over the sides behave like l/R2~’~”~ and approach zero if Re: > ~N.
Combining this with Theorem 4.1, we obtain as R —* cxc
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2 [ p(A)dA f p(A)dAJ (22 + b
2)z + J (A2 + b2)z

0

—

2itie_1 esp(A)~ 1+p~~ DN(L,p) (8 6)
— DN(l,p) ~ [(L+p)

2—b2]~

The sum on the right-handside is just the p-form c-function (7.11) on the
N-sphere.On the otherhandthe first integralon the left handside of (8.6) is
proportional to c~’1~(z)given in Eq. (4.7). A simple calculationusing (4.19)
and (3.12) gives

DN(l,p) N/2
= iit(—1) g(p)bNQN, (8.7)resp (A) 2= i(p-~-1)

where g(p) and bN aregiven in Eqs. (4.9) and (7.4), and QN is the volume
of the N-sphere [seeEq. (3.6)]. Using Eqs. (4.7), (7.11) and (8.7) we can
rewrite Eq. (8.6) in the following way:

= e~~2~QN(c(Th(z) + ~g(p)bNf ~ (8.8)

To simplify this expression further we use (8.5) andthe identity

tanh(itA) = —l + 2 2 (8.9)
“ + 1

in the integralover y, andshowthat the term “—1” gives no contribution,i.e.,

[ f(A)dA 1

J (22 + b2)z = o~ Rez> ~N. (8.10)

In order to see this consider for Re: > ~N the integral of f(A)/(A2 + b2)
over the contourF. Since f(A) is odd [compareEqs. (8.5) and (4.19)], the
integral over the real line vanishes and the integrals over the sides of the
rectangle again approach zero as R —i cxc. Since the integrand is analytic and
has no poles inside the contour F, the integral over the remaining part y must
vanish.This establishesEq. (8.10).

We thus obtain the following form of c~5~(z),valid for all ::

= eu1~~~~72)QN

x (c(z)+itg(p)bNf(
2Af~b2)). (8.11)

Sincethe last term in (8.11) is analytic, we see thatc~
5~(z)carriesthe same

poles and residues as c~”~zin Eq. (7.9) [see (7.10)]. The finite parts of
these c-functions are of course different.
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Eq. (8.11) is well suited for analytic continuationto negative values of :.

If Re: < 0, it is possibleto obtain a simpler expression for the integral over
;‘. Considerthe integral over the semicircle aroundthe point ib. By letting
2— ib = ce’0 we see that as c —. 0 this integral behavesas ~ Thus, if
Re: < 0, the contoury can be contractedto run along the edgesof the cut
andthere is no contributionfrom the semicircle.By using the phases

- .o~ ~r~e2”~ above (0 = 2it),(~—ib)~= re’ = - (8.12)below (0 = 0),

we obtain

lim [ f(A)dA
í—~0J (e2”2 + l)(A2 + b2):

I f(A)dA= 2ie sin(it:) J ~-2~2 + l)(A2 + b2Y (8.13)

= —2ie’~sin(it:) 7 f(ib ~ , (8.14)

I [e2~(Y’~~)+ 1] [(y — ib)2 + b2]~

Re: <0.

Thus the integralalong y in (8.11) vanishesfor : = —1, —2,.... The propor-
tionality of the pole residuesof c~(:)and c~11~(:),and of their valuesat
the negativeintegersleadsto

= (—1)~a~i”~ (8.15)

(valid for n = 0,1,2,... and n ~ ~N), where a
0 are the (unintegrated)

coefficients of the asymptotic (small time) expansion of the trace of the heat
kernel of I acting on coexact forms. [Since5”’ and HN are homogeneous,
the coincidencelimits a0 = a0(x,x) are constants independent of x. The
integratedcoefficientson 5N are simply u0 = QNa0.] Eq. (8.15) follows from
the relations

a0 cx (_l)N!20[F(n + 1— ~N)]’c(~N— n),

n = ~N,~N+ 1,..., (8.16)

a0 cx F(~N— n) resc(:)I1A~!2_fl,

n =0,l,...,~N—l, (8.17)

valid for N even. [The constantof proportionality in (8.16), (8.17) is (4it)~”!
2/

QN for 5”’ (see e.g. [26]), and (4it)””2 for HN.] However the coefficients
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aN)2, which by (8.16) areproportionalto c(o), are not relatedas in (8.15).~
Indeedfor z = 0 the contoury in (8.11) can be deformedto a circumference
of radius� going clockwisearoundthe simple poleat A = ib. The contribution
to c(0) is easilyevaluatedandwe find

= (~1)”’~2QNc~”~(o) + (_l)P+l for p <p. (8.18)

If p > p, then the secondterm is (—l)P. It is not difficult to verify that this
value agreeswith that obtainedby using Eq. (7.29).

8.2. N odd

For N odd p(A) is analytic [see (4.18)]. To usethe residuetheoremwe
needto introducea fictitious spectralfunction~i(A) definedby

coth(itA)p(A). (8.19)

We thendefine f(A) p(A)/it. We immediatelysee that the function ~(A)
has simple poles given againby Eqs. (4.20) and is otherwiseanalytic in the
A-plane. By calculatingthe residuesat the poles in (4.20) we find

resü(i(L + p)) — DN(L,p) L — 1 2 (820)
res~T~(i(1+ p)) — DN(1,p)’ —

This is analogousto Theorem4.1 for N even.
First wetreatthe casewith p ~ p. Considerthe integralof i~(A)/(_A2_b2)1

(whereagainb ~ —p~)over the samecontourF of Fig. 1 [with R satisfying

(8.3)]. Notice that ~(A) is anodd function (sincep(A) is even),andtherefore
the integralover the real line is now zero. By applyingthe residuetheoremwe
obtain in the limit R —~ cxc

= DN(l,p)e~~z 1 [ i~(A)dA (821)res,u(A)IA,(l+P) 2iti J (A2 + b2)~

A simplecalculationgives

DN(1,p)
= (_l)Pitg(p)b~�2~. (8.22)resp i(l+p)

We now usethe identity

coth(itA) = —l — e2~— 1 (8.23)

in the integral over y in (8.21). The contribution of the term “—1” can be
relatedto c~”~zin the following way. Considerfor Re: > ~N the integral

This result holds only for p ~ 0. For p = 0 (i.e. for scalars) it is true that a~
2~=

(_1)~~~/2aA,~’).However (8.16) fails to hold on S” for n = N/2, as the presenceof a zero

eigenvaluegives ~(‘~“>(0) = (4~) N/2QNa~’) — 1, see [4]. This agreeswith (8.18) for p = 0.
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over F of the function f(A)/(A2 + b2)’. Since f(A) is evenandthe integrand
is analytic inside the contourF we find

f f(A)dA — 2 1 f(A)dA 824

1 (A~+ b2)~— — 1 (A~+ b2): (
cc 0

Using Eqs. (8.22), (8.23) and (8.24) in (8.21) we obtain

=

xQN{c(m(:) +itg(P)h~\r/ (1(~/2)}. (8.25)

The functionc~5~(:)hasthe samepoles andresiduesas c(Th: in Eq. (7.2)
[see (7.6)]. Again for Re: <0 the integral over ~‘ can be contractedto yield a
resultsimilar to (8.13) and (8.14). Thusc~5~:vanishesat : = —1, —2
in agreementwith (7.22). For : = 0 the integrand in the second term of
(8.25) hasa simple pole at A = ib (since h = ~ —p~is integer).The contour

;‘ can be replacedby a 1oop aroundthis poleandwe obtain

~(S) . . p(A)ç (0) = —l (—1 )0Q,~’g(p)b,~’(—2iti)res 1 —

= (_l)P+l (8.26)

in completeagreementwith (7.23).
Finally, we need to consider the case of N odd and p = p. As already

observedin Section 5, the zetafunctionof the operatorI on jjN is ill defined
in this casebecausethe spectrumextendsto zero, and there is no region in
the z-planewherethe integral in (4.7) converges.We could considerthe zeta
functionsof I + m2 (where in ~ 0 is a constant)on

5N and H”’ and relate
them as before. Instead,let us obtain a contourrepresentationof c~:of
I by the methodusedabove,and showits equivalencewith (7.24). Consider
for Re: > ~N the integral

I’ = ~ ~ (8.27)

wherethe A-plane is cut alongthe negative real axis (the branchpoint of the
integrandbeingnow at the origin), andthe contourF’ is asquareof vertices
(R + iR, —R + iR, —R — iR, R — iR) deformedaroundthe cut at 2 = 0 to a
contour y’ similar to y in Fig. 1. The integrandin I’ is analytic inside the
contourF’ exceptfor the simplepoles on the imaginaryaxisat A = ±i(p+ L),
L = 1,2,... (see (4.20)). In the limit R —* oc the integralsover the sidesof
F’ tendto zero as long as Re: > ~N. If the correctphasesare insertedwe find
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I’ = 2iti~residuesin upper + lower plane

= 2~~re5~A=IU+p) (1 + e2~)c~p(z). (8.28)

Using

1 + e

22T12 = 2e”~cos(itz) (8.29)

andEq. (8.22) (which still holds), we obtain

c~(z) = [4icos(it:)]1(_1)Pg(p)bNQNfA2~(A)dA. (8.30)

Using (8.19) andthe identity (8.23) in the integral over y’ we see that the
term “—1” doesnot contribute, andwe find

(S) — i(_l)Pg(p)b~Q~ f p(A)dA (831)c~=~z) — 2 cos(it:) J (e2~2— l)A2z’

which replacesEq. (8.25). For Re: <0 the integralover y’ can be contracted
to yield a result similar to (8.13) and (8.14), showingthat c~5~(:)vanishes
at the negativeintegers.For : = 0 by repeatingthe calculationthat led us to
(8.26) we find ~ (0) = (—1) ~ in agreementwith (7.26).

To verify the equivalenceof (8.31) and (7.24) directlywe use the following
contourrepresentationfor the Riemannzetafunction (see,e.g., Ref. [16, Eq.
(9.512)])

f Az~dA— 2 cR(:) 8 32
je~_1_itlF(l_:y (.)

Using this and

p(A) = 2 ~~k,N2 (8.33)
[2N_2r(~N)]

(compareEqs. (4.18) and (7.1)) in (8.31) we obtain

(5) — (_1)Pg(p)b~Q~
— 2

2 cos(itz) [2~2r(~N)]

x ~
2it)2~22~)U. (8.34)

We now use the transformation formula (see, e.g., Ref. [16, Eq. (9.535), n.
21)

F(1—z) = 2zitz~sin (~itz)cR1 — z), (8.35)
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to find

= )g(~~ ~(_l)kc~P~,cR(2:_2k). (8.36)
[2.v_2r(~AT)] k=0

This agreeswith (7.24) in view of Eqs. (7.14) and (8.22). A similar procedure
(thoughmorecomplicated)shouldallow oneto verify directly the equivalence
of (7.29) and (8.11) (for N even), and that of (7.17) and (8.25) (for N
odd).

9. Conclusions

The results of this paper and of Ref. [7] (see also [2]) indicate that
the eigenmodesof the Laplace—Beltramioperatoron vector bundlesover the
hyperbolic space H”’ = SO0(N,1)150(N) can be determinedexplicitly by
separatingvariablesin geodesicpolar coordinates.The relevantequationsfor
the radial modes can be reducedto hypergeometricform. The Plancherel
measurecanthenbe obtainedin a purely analyticway from the generaltheory
of Sturm—Liouville systems.

This methodbecomesimpracticablefor a genericnoncompactRiemannian
SS G/K, especiallyfor the higher-rankspaces,wherethe algebra involved is
formidable. In thesecasesit is more useful to developanalysison SS basedon
group theoreticmethodsas we did in Section6.

Let r be an irreducible unitary representationof the maximal compact
subgroupK on a vector spaceH1. Let g —* U(g) be an irreducible unitary
representationof G in a Hilbert spaceV such that UIK containsr. Definethe
generalizedsphericalfunctionsoftyper by

= P(t)U(g)P(t), (9.1)

where

P(t) = d1f U(k’)~1(k)dk (9.2)

is the projectorof V onto V1, the closed subspaceof V consistingof those
vectorswhich transformunder K accordingto t [15]. (Hered1 dim H1, x~
is the characterof T, and we have normalizedthe volume of K to 1.) The
functions I~ are essentiallythe matrix coefficientsof U (g) in V1. Regarded
as operatorson V1, they satisfy

~“(kgk’) = ru(k)~’(g)t~’(k’), k,k’eK, gEG, (9.3)

where Tu(k) denotesthe restriction of U(k) to V1. The traces ç5~c’(g) =

Tr[li~~’(g)] are well defined becauseV1 is finite-dimensional (this is always
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true for a semisimpleG). 6 The functions ~ and their properties were first
consideredby Godement[15]. It follows from (9.3) that they are K-central,
i.e. q~’(kgk’) = ç5~’(g).Furthermorefrom (9.1) and (9.2) we have

~(g) = d
1f e~(gk~)~1(k)dk, (9.4)

where
9u (g) is the characterfunction in Eq. (6.4). Thus the tracesof the

generalizedsphericalfunctions I~areobtainedby taking the convolution (in
K) of the characterof U with the characterof ‘r.

Due to the Cartan decompositionG = KAK, the functions ‘~Yand their
traces are determined by their restriction to the Cartan subspace A. Let X be
a generatorof G/K anddefine cP~’(ExpX)= ~-‘(expX) on G/K, where Exp
andexp denote the exponential mapson G/K and G, and define ~‘ in a
similar way. Using kExpX = Exp[Ad(k)X] andexp[Ad(k)X] = kexpXk’
we seethat

~‘(kx)=~’(x), x=ExpX, kEK, (9.5)

i.e., the ~‘ are zonal functions on G/K and are thus determined by their
restrictionto Ax

0 (xo is the origin of G/K). The generalizedradial part of the
(secondorder)Casimiroperatorof G acting on the restrictionscP~’(a), a E A,
is given e.g. in Ref. [37, vol. II, p. 277] . Since the cI~~~’are eigenfunctionsof
the Casimiroperatoroneobtainsa differentialequationwhich can in principle
be solved explicitly (at least in the rank-onecaseandfor somesimple T).

It can be shown (using (6.9)) that the trace of the heat kernel for the space
L

2(G/K,E1) can be expanded in termsof the functions ~‘, where U runs
over the irreducible unitary representations of G which contain t and have
nonzeroPlancherelmeasure.Thus we havethe following formula:

TrK(xo,x,t) = ~ f ‘(x)e~~L’dp(U), (9.6)

where—WU arethe eigenvaluesof the second-orderCasimiroperatoractingon
‘I~’.In generalthe right handside of (9.6) will containboth an integral (cor-
respondingto the principal series)anda sum (correspondingto the discrete
series).Eq. (6.20) is the coincidencelimit x —~ x

0 of (9.6). The “complemen-
tary series”of G do not contributeto the harmonicanalysisof vectorbundles
over G/K. ~ Since the Plancherelformula for L

2 (G) is known explicitly by
the work of Harish—Chandra[25,37], we see that the spectraldecomposition

6 It is known that the multiplicity c~,of t in U [K satisfies~u < d
1 [15,25].Thus dim V, = ~ud,

andthe representation ~r,jof K on V1 is the directesum of i~,, copiesof t.

~Notice that this is~not true for a (pseudo-Riemannian)symmetricspace G/H, whereH is a
noncompactsubgroupofG. For examplefor N> 2 thecomplementaryseriesof G = SO0(N + 1, 1)
appear already in the scalar bundle L

2(G/H) where H = 50

0(N, 1) 129].



92 R. (‘amporesi, A. Higuchi/Journal of GeometryandPhysics 15 (1994)5 7—94

of L
2(G/K,E1) into eigenspacesof the Laplacianis known, in principle, for

any noncompactRiemannianSS G/K. By analytic continuationone can also
handlevectorbundlesover the compact“dual” spaceU/K (seeRef. [18] for
the definition andclassificationof dual symmetricspaces).

It is then naturalto conjecturethat Theorem4.1 can be generalizedto any
field defined on a pair of dual Riemanniansymmetric spacesG/K — U/K.
That is, the pole residuesof the continuouspartof the Plancherelmeasurefor
the principal seriesof G containingt areproportionalto the dimensionsof the
irreps of U which containr. In the caseof scalarsthis resultwas stated,without
proof, in Refs. [33,20,4]. The general proof for scalars,basedon the work of
Vretare [32], has been obtained by Helgason [21]. It is evident that a general
proof for arbitrary vector bundles on G/K — U/K can be obtainedby using
the Harish—Chandraformula for the Plancherelmeasureon G (this formula
will reduceto the Weyl dimensionformula whencalculatingthe residues).

Concerningthe explicit form of the eigenmodesof the Laplacian and of
the sphericalfunctions cT~Y not much is known in general. [The Plancherel
measureis known becauseit is determinedonly by the asymptoticform of the
sphericalfunctionsat infinity.]

For examplein the scalarcasethe eigenfunctionsof the Laplacian on G/K
(sphericalor not) are known only in very few cases,e.g., in the rank-one
caseand in the complexcase.Formally the scalarsphericalfunctionson G/K
can be obtainedby “averaging” the complexcharactersof A over the compact
subgroupK (see [19, p. 418]).

A similar formulafor the functionsç5~’,i arbitrary, may be obtainedwhen
~Jis in the principal seriesassociatedwith a minimal parabolicsubgroup(see
Ref. [37, vol. II, pp. 41—42]). However, except for some very simple cases
(e.g. G = SL(2,R)), closedexpressionsdo not seemto be known. It would
be interestingif onecould solveexplicitly the differentialequationfor I~’ (or
their traces) in the rank-onecaseand for somesimple choiceof ‘r.
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